
By Kundan Kumar Gautam

Operating System – I/O Management

One of the important jobs of an Operating System is to manage the operations of
various I/O devices including mouse, keyboards, touch pad, disk drives, display adapters,
USB devices, Bit-mapped screen, LED, Analog-to-digital converter, On/off switch,
network connections, audio I/O, printers etc.

The I/O system of an OS works by taking I/O request from an application software and
sending it to the physical device, which could be an input or output device then it takes
whatever response comes back from the device and sends it to the application.

Components of I/O Hardware

 I/O Device

 Device Driver

 Device Controller

I/O Device: I/O devices such as storage, communications, user-interface, and others
communicate with the computer via signals sent over wires or through the air. Devices
connect with the computer via ports, e.g. a serial or parallel port. A common set of
wires connecting multiple devices is termed a bus.

I/O devices can be divided into two categories −

 Block devices − A block device is one with which the device driver communicates
by sending entire blocks of data. For example, Hard disks, USB cameras, Disk-On-
Key etc.

 Character devices − A character device is one with which the device driver
communicates by sending and receiving single characters (bytes, octets). For
example, serial ports, parallel ports, sounds cards etc

Device Driver: Device drivers are software modules that can be plugged into an OS to
handle a particular device. Operating System takes help from device drivers to handle all
I/O devices.

Device Controller: The Device Controller works like an interface between a device and a
device driver. I/O units (Keyboard, mouse, printer, etc.) typically consist of a mechanical
component and an electronic component where electronic component is called the
device controller.

By Kundan Kumar Gautam

There is always a device controller and a device driver for each device to communicate
with the Operating Systems. A device controller may be able to handle multiple devices.
As an interface its main task is to convert serial bit stream to block of bytes, perform
error correction as necessary.
Any device connected to the computer is connected by a plug and socket, and the
socket is connected to a device controller. Following is a model for connecting the CPU,
memory, controllers, and I/O devices where CPU and device controllers all use a
common bus for communication.

Communication to I/O Devices
The CPU must have a way to pass information to and from an I/O device. There are
three approaches available to communicate with the CPU and Device.

 Special Instruction I/O

 Memory-mapped I/O

 Direct memory access (DMA)

 Special Instruction I/O: This uses CPU instructions that are specifically made for
controlling I/O devices. These instructions typically allow data to be sent to an I/O
device or read from an I/O device.

 Memory-mapped I/O: When using memory-mapped I/O, the same address space
is shared by memory and I/O devices. The device is connected directly to certain
main memory locations so that I/O device can transfer block of data to/from
memory without going through CPU.

By Kundan Kumar Gautam

While using memory mapped IO, OS allocates buffer in memory and informs I/O
device to use that buffer to send data to the CPU. I/O device operates
asynchronously with CPU, interrupts CPU when finished.
The advantage to this method is that every instruction which can access memory
can be used to manipulate an I/O device. Memory mapped IO is used for most
high-speed I/O devices like disks, communication interfaces.

 Direct Memory Access (DMA)
Slow devices like keyboards will generate an interrupt to the main CPU after each
byte is transferred. If a fast device such as a disk generated an interrupt for each
byte, the operating system would spend most of its time handling these
interrupts. So a typical computer uses direct memory access (DMA) hardware to
reduce this overhead.
Direct Memory Access (DMA) means CPU grants I/O module authority to read
from or write to memory without involvement. DMA module itself controls
exchange of data between main memory and the I/O device. CPU is only involved
at the beginning and end of the transfer and interrupted only after entire block
has been transferred.
Direct Memory Access needs a special hardware called DMA controller (DMAC)
that manages the data transfers and arbitrates access to the system bus. The
controllers are programmed with source and destination pointers (where to
read/write the data), counters to track the number of transferred bytes, and
settings, which includes I/O and memory types, interrupts and states for the CPU
cycles.

By Kundan Kumar Gautam

The operating system uses the DMA hardware as follows −

Step Description

1 Device driver is instructed to transfer disk data to a buffer address X.

2 Device driver then instruct disk controller to transfer data to buffer.

3 Disk controller starts DMA transfer.

4 Disk controller sends each byte to DMA controller.

5 DMA controller transfers bytes to buffer, increases the memory address, decreases the counter C
until C becomes zero.

6 When C becomes zero, DMA interrupts CPU to signal transfer completion.

By Kundan Kumar Gautam

Polling Vs Interrupts I/O
A computer must have a way of detecting the arrival of any type of input. There are two
ways that this can happen, known as polling and interrupts. Both of these techniques
allow the processor to deal with events that can happen at any time and that are not
related to the process it is currently running.

 Polling I/O: Polling is the simplest way for an I/O device to communicate with the
processor. The process of periodically checking status of the device to see if it is
time for the next I/O operation is called polling. The I/O device simply puts the
information in a Status register, and the processor must come and get the
information.
Most of the time, devices will not require attention and when one does it will
have to wait until it is next interrogated by the polling program. This is an
inefficient method and much of the processors time is wasted on unnecessary
polls.
Compare this method to a teacher continually asking every student in a class, one
after another, if they need help. Obviously the more efficient method would be
for a student to inform the teacher whenever they require assistance.

 Interrupts I/O: An alternative scheme for dealing with I/O is the interrupt-driven
method. An interrupt is a signal to the microprocessor from a device that
requires attention.
A device controller puts an interrupt signal on the bus when it needs CPU’s
attention when CPU receives an interrupt It saves its current state and invokes
the appropriate interrupt handler using the interrupt vector (addresses of OS
routines to handle various events). When the interrupting device has been dealt
with the CPU continues with its original task as if it had never been interrupted.

I/O Software

I/O software is often organized in the following layers –

 User Level Libraries − This provides simple interface to the user program to
perform input and output. For example, stdio is a library provided by C and C++
programming languages.

 Kernel Level Modules − This provides device driver to interact with the device
controller and device independent I/O modules used by the device drivers.

 Hardware − This layer includes actual hardware and hardware controller which
interact with the device drivers and makes hardware alive.

 A key concept in the design of I/O software is that it should be device
independent where it should be possible to write programs that can access any

By Kundan Kumar Gautam

I/O device without having to specify the device in advance. For example, a
program that reads a file as input should be able to read a file on a floppy disk, on
a hard disk, or on a CD-ROM, without having to modify the program for each
different device.

Device Drivers
Device drivers are software modules that can be plugged into an OS to handle a
particular device. Operating System takes help from device drivers to handle all I/O
devices. Device drivers encapsulate device-dependent code and implement a standard
interface in such a way that code contains device-specific register reads/writes. Device
driver, is generally written by the device's manufacturer and delivered along with the
device on a CD-ROM.
A device driver performs the following jobs −

 To accept request from the device independent software above to it.

 Interact with the device controller to take and give I/O and perform required
error handling

 Making sure that the request is executed successfully

By Kundan Kumar Gautam

How a device driver handles a request is as follows: Suppose a request comes to read a
block N. If the driver is idle at the time a request arrives, it starts carrying out the
request immediately. Otherwise, if the driver is already busy with some other request, it
places the new request in the queue of pending requests.

Interrupt handlers: An interrupt handler, also known as an interrupt service routine or
ISR, is a piece of software or more specifically a callback function in an operating system
or more specifically in a device driver, whose execution is triggered by the reception of
an interrupt.
When the interrupt happens, the interrupt procedure does whatever it has in order to
handle the interrupt, updates data structures and wakes up process that was waiting for
an interrupt to happen.

Device-Independent I/O Software: The basic function of the device-independent
software is to perform the I/O functions that are common to all devices and to provide a
uniform interface to the user-level software. Though it is difficult to write completely
device independent software but we can write some modules which are common
among all the devices.

User-Space I/O Software: These are the libraries which provide richer and simplified
interface to access the functionality of the kernel or ultimately interactive with the
device drivers. Most of the user-level I/O software consists of library procedures with
some exception like spooling system which is a way of dealing with dedicated I/O
devices in a multiprogramming system.
I/O Libraries (e.g., stdio) are in user-space to provide an interface to the OS resident
device-independent I/O SW. For example putchar(), getchar(), printf() and scanf() are
example of user level I/O library stdio available in C programming.

Kernel I/O Subsystem: Kernel I/O Subsystem is responsible to provide many services
related to I/O. Following are some of the services provided.

 Scheduling − Kernel schedules a set of I/O requests to determine a good order in
which to execute them. When an application issues a blocking I/O system call, the
request is placed on the queue for that device. The Kernel I/O scheduler
rearranges the order of the queue to improve the overall system efficiency and
the average response time experienced by the applications.

 Buffering − Kernel I/O Subsystem maintains a memory area known as buffer that
stores data while they are transferred between two devices or between a device
with an application operation. Buffering is done to cope with a speed mismatch
between the producer and consumer of a data stream or to adapt between
devices that have different data transfer sizes.

By Kundan Kumar Gautam

 Caching − Kernel maintains cache memory which is region of fast memory that
holds copies of data. Access to the cached copy is more efficient than access to
the original.

 Spooling and Device Reservation − A spool is a buffer that holds output for a
device, such as a printer, that cannot accept interleaved data streams. The
spooling system copies the queued spool files to the printer one at a time. In
some operating systems, spooling is managed by a system daemon process. In
other operating systems, it is handled by an in kernel thread.

 Error Handling − An operating system that uses protected memory can guard
against many kinds of hardware and application errors.

